
RESTful services and
OAUTH protocol in IoT

by Yakov Fain, Farata Systems

Farata Systems and SuranceBay

http://easy.insure

http://easy.insure

The three parts of this presentation

• One approach to integrating consumer devices in the
business workflow

• Live demo: integration of a blood pressure monitor

• A brief review of REST, OAUTH, Websockets and their
roles tin our application.

Yesterday’s Sensors (Things)

• 18 years ago. Telephony.

• I’ve been programming IoT!

Today’s Sensors 

SCIO: a molecular sensor that scans physical objects and
receives instant information to your smartphone.

http://www.consumerphysics.com/

http://www.consumerphysics.com/

Tomorrow: Streachable Wearables 
epidermal electronics

Source: http://bit.ly/1uu0srr

http://bit.ly/1uu0srr

A thing is a thing,

not what is said of that thing.
The Birdman movie

A thing is a thing +

an app + an API + a Web site.

Smartphone  
app

Device  
 Manufacturer’s 

Server
Device

A Typical Consumer Device Setup

Bluetooth or NFC

MQTT, CoAp, …

MQTT, CoAp, …

Low-Level IoT Approach
Learn and implement IoT protocols: MQTT, XMPP, AMQP, CoAp,…

Write Java programs for Raspberry Pi or Arduino  

Learn HomeKit and HealthKit from Apple

High-Level IoT Approach

Create applications using standard
technologies to integrate things into an

existing business workflow.

A Proof of Concept App
• Integrate consumer devices into one of the insurance

business workflows

• Leverage existing software technologies

• Create a standard-based application layer that connects
things

Your Server in the Middle
• Create a software layer as a proxy for all communications

with IoT devices.

• Find the use-cases for data-gathering devices in your
business applications.

• Collect valuable data from devices for analisys.

Java dominates on the middleware market.

The Use Case: Integrating Scale and Blood Pressure Monitor 
into insurance workflow

IHealthLabs Blood 
Pressure Monitor

Fitbit Scale 
Aria

Medical Examiner’s Report

Removing Manual Entry

DeviceVendor.com

XYZ protocol

XYZ protocol

A Typical IoT Workflow

http://fitbit.com

A Typical IoT Workflow

XYZ protocol

XYZ protocol

We’re not interested in XYZ 
 

Our server communicates with the vendor’s server  
using HTTP 

DeviceVendor.com

http://fitbit.com

Integrating With Fitbit Scale: Take 1.
fitbit.com

My Front-End App

HTTP/Rest API
 Weight:

http://fitbit.com

Integrating With Fitbit Scale: Take 2.
fitbit.com

HTTP/Rest API

Weight:

My Front-End App
My Server

Polling/Pub-SubData push
via

WebSocket

http://fitbit.com

Integrating With Fitbit and iHealthLabs.
fitbit.com

 Weight:

iHealthLabs.com
HTTP/ 

Rest API

 Blood Pressure:

HTTP/Rest API

Data push
via

WebSocket

My Front-End App
My Server

http://fitbit.com
http://iHealthLabs.com

Adding OAuth Authentication
fitbit.com

 Weight:

iHealthLabs.com
HTTP/ 

Rest API

 Blood Pressure:

HTTP/Rest API
My Front-End App

My Server

Data push
via

WebSocket

Secret, key,
tokens from

each vendor are
here

http://fitbit.com
http://iHealthLabs.com

The Final Architecture
fitbit.com

 Weight:

iHealthLabs.com
HTTP/ 

Rest API

 Blood Pressure:

HTTP/Rest API
My Front-End App

My Server

Data push
via

WebSocket

- Vendor’s consumer app

Secret, key,
tokens from

each vendor are
here

http://fitbit.com
http://iHealthLabs.com

Demo

Measuring Blood Pressure

What we’ve used in our app
• RESTful Web services

• OAuth authentication and authorization

• WebSocket protocol

• Front end is written in Dart, deployed as JavaScript

• JSON data format

• Back-end in written in Java with Spring Boot and embedded
Tomcat

• Gradle for build automation

© 2015 Farata Systems

REST API

REpresentational State of Transfer

© 2015 Farata Systems

REST Principles (by Roy Fielding)
• Every resource on the Web has a unique ID (a unique URI)
• Use uniform interface: HTTP Get, Post, Put, Delete. Separation of

concerns.
• A resource can have multiple representations (text, JSON, XML, PDF,

etc.)
• Requests are stateless – no client-specific info is stored between

requests
• You can link one resource to another
• Resources should be cacheable
• A REST app can be layered

© 2015 Farata Systems

Selected HTTP Request Methods

• GET Safe, nullipotent, cacheable

• PUT Idempotent

• DELETE Idempotent

• POST None of the above

Nullipotent: a method has no side effect; it doesn’t change the data.  

Idempotent: regardless of how many times the method is invoked, the end result is the same.

 <- Retrieve

 <- Update

<- Delete  

<- Create

© 2015 Farata Systems

Java EE 7: JAX RS 2.0
• Rest Endpoint - a POJO, typically deployed inside WAR

• Has Client API

• Message Filters and Entity Interceptors (e.g. Login Filter,
encryptions et al.)

• Async processing on both client and server

• Validation

© 2015 Farata Systems

Selected JAX-RS Annotations
• @ApplicationPath - defines the URL mapping for the application packaged in a war. It’s the base URI for all @Path

annotations.

• @Path - a root resource class (POJO),that has at least one method annotated with @Path.

• @PathParam - injects values from request into a method parameter (e.g. Product ID)

• @GET - the class method that handles HTTP Get. You can have multiple methods annotated with @GET, 
 and each produces different MIME type.

• @POST - the class method that handles HTTP Post

• @PUT- the class method that handles HTTP Put

• @DELETE - the class method that handles HTTP Delete

• @Produces - specifies the MIME type for response (e.g. “application/json”). The client’s Accept header 
 of the HTTP request declares what’s acceptable. The client gets 406 if no methods that produce required is found.

• @Consumes - specifies the MIME types that a resource can consume when sent by the client. If a resource is unable to
consume the requested MIME type, the clients get HTTP error 415.

• @QueryParam - if a request URL has parameters, each param will be placed in the provided Java variable.

© 2015 Farata Systems

HTTP Request and Java EE Rest Endpoint

A sample client’s HTTP request:
“https://iHealthLabs.com:8443/iotdemo/ihealth/bp"

localhost:8080/webresources/product/Handbag

© 2015 Farata Systems

HTTP Request and Java EE Rest Endpoint

A sample client’s HTTP request:
“https://iHealthLabs.com:8443/iotdemo/ihealth/bp"

// Configuring The App
@ApplicationPath(“iotdemo")
public class MyIoTApplication extends Application { 
}

localhost:8080/webresources/product/Handbag

© 2015 Farata Systems

HTTP Request and Java EE Rest Endpoint

// Receiving and handling blood pressure on our server
@Path("/ihealth")  
public class BloodPressureService {

 // …
 // The method to handle HTTP Get requests
 @GET
 @Path("/bp")  
 @Produces(“application/json")  
 public String getBloodPressureData() {
 // The code to get bp and prepare JSON goes here  
 return bloodPressure;  
 }
}

A sample client’s HTTP request:
“https://iHealthLabs.com:8443/iotdemo/ihealth/bp"

// Configuring The App
@ApplicationPath(“iotdemo")
public class MyIoTApplication extends Application { 
}

localhost:8080/webresources/product/Handbag

© 2015 Farata Systems

A Sample Spring’s Rest Endpoint

// The endpoint handling blood pressure
@RestController 
@RequestMapping("/ihealth")  
public class HealthLabsController {

// …
// The method to handle HTTP Get requests
@RequestMapping(value="/bp", method = RequestMethod.GET,  
 produces = "application/json")  
public Measurement getBloodPressureData() {
 // The code to get blood pressure goes here  
 return bloodPressure;  
 }
}

OAuth
Authorizing an app to act on behalf of the user

Authorization and Authentication
• Authentication is verifying the identity of the user.  

Is he who he says he is?

• Authorization is figuring out what resources the user can
access.

The owner of the Blood Pressure Monitor can see only the
measurments taken from his device.

The OAuth Players

• The server with user’s resources (data)

• The authorization server

• The client app that wants to acccess user’s resources

Delegating to 3rd Party Authorization Servers

You don’t give your Facebook password to Candy Crush

Candy Crush Authorization with Facebook

OAuth 2 Access Token
A client app needs to aquire an access token that
can be used on behalf of the user.

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect

URI for successful and failed logins and gets a client id and a secret.

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect

URI for successful and failed logins and gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST).

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor: providing a redirect

URI for successful and failed logins and gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST).

• The user opens my app and logs into thing’s vendor site via its authentication
server (not the OAuth provider).

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect

URI for successful and failed logins and gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST)

• The user opens my app and logs into thing’s vendor site via its authentication
server (not the OAuth provider).

• My app (not the browser) generates a session-based random state and sends
the request to the thing vendor’s OAuth provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email
user_likes”&state=7F32G5

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect URI for successful

and failed logins and gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST)

• The user opens my app and logs into thing’s vendor site via its authentication server (not the
OAuth provider).

• My app (not the browser) generates a session-based random state and sends the request to
the thing vendor’s OAuth provider:  
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s vendor, regenerates state and compares
with the received one: 
 
https://myCallbackURL?code=54321&state=7F32G5

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect URI for successful and failed logins

and gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST)

• The user opens my app and logs into thing’s vendor site via its authentication server (not the OAuth provider).

• My app (not the browser) generates a session-based random state and sends the request to the thing
vendor’s OAuth provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s vendor, regenerates state and compares with the
received one:  
 
https://myCallbackURL?code=54321&state=7F32G5

• ,My app makes another request adding the secret and exchanging the code for the authorization token: 
 
https://<auth_server>/path?clientid=123&client_secret=…&code=54321&redirect_uri= 
https//myCallbackURL&grant_type=authorization_code

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor: providing a redirect URI for successful and failed logins

and gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST)

• The user opens my app and logs into thing’s vendor site via its authentication server (not the OAuth provider).

• My app (not the browser) generates a session-based random state and sends the request to the thing
vendor’s OAuth provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//
myCallbackURL&response_type=code&scope=“email user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s vendor, regenerates state and compares with the
received one:  
 
https://myCallbackURL?code=54321&state=7F32G5

• ,My app makes another request adding the secret and exchanging the code for the authorization token:  
 
https://<auth_server>/path?clientid=123&client_secret=…&code=54321&redirect_uri= 
https//myCallbackURL&grant_type=authorization_code

• The thing’s vendor redirects the user to my app and returns the authorization token.

A Sample OAuth 2 Workflow
• My company registers the app with the thing’s vendor providing a redirect URI for successful and failed logins and

gets a client id and a secret.

• My company builds an app that uses the thing’s API (e.g. with REST)

• The user opens my app and logs into thing’s vendor site via its authentication server (not the OAuth provider).

• My app (not the browser) generates a session-based random state and sends the request to the thing vendor’s OAuth
provider: 
 
https://<auth_server>/path?clientid=123&redirect_uri=https//myCallbackURL&response_type=code&scope=“email
user_likes”&state=7F32G5

• My app receives temporary auth code from the thing’s vendor, regenerates state and compares with the received one:  
 
https://myCallbackURL?code=54321&state=7F32G5

• ,My app makes another request adding the secret and exchanging the code for the authorization token:  
 
https://<auth_server>/path?clientid=123&client_secret=…&code=54321&redirect_uri= 
https//myCallbackURL&grant_type=authorization_code

• The thing’s vendor redirects the user to my app and provides the authorization token.

• My app starts invoking the vendor’s API using the token.

iHealthLabs Authorization

Access and Refresh Tokens
• The OAuth 2 server returns the authorization token. It

expires after certain time interval. iHealtLabs sends the
token in JSON format that expires in 10 min.

• The OAuth 2 server also provides a refresh token that the
application uses to request a new token instead of the
expired one.

© 2015 Farata Systems

WebSocket Protocol
Bi-directional communication for the Web

© 2015 Farata Systems

HTTP Hacks for Server’s push
• HTTP is request-based and high-overhead protocol

• Hacks for achieving the server-side “push”:

• Polling

• Long Polling

• HTTP Streaming

• Server-Side Events (SSE)

© 2015 Farata Systems

Monitoring AJAX requests

© 2014 Farata Systems

Introducing WebSocket
• Standardized full-duplex low overhead protocol.

• Client-side API: Web browser’s window.WebSocket
object or your Java app.

• Server-side API: Java EE 7, Spring Framework, etc.

• All modern browsers support WebSocket protocol

http://caniuse.com/websockets

http://caniuse.com/websockets

© 2015 Farata Systems

Apps for Websockets
• Live trading/auctions/sports notifications

• Controlling medical equipment over the web

• Chat applications

• Multiplayer online games

© 2015 Farata Systems

The WebSocket Workflow
• Establish a connection with the server’s endpoing

upgrading the protocol form HTTP to WebSocket

• Send messages in both directions at the same time
(Full Duplex)

• Close the connection

© 2015 Farata Systems

WebSocket Client/Server handshake

• Client sends UPGRADE HTTP-request

• Server confirms UPGRADE

• Client receives UPGRADE response

• Client setsreadyState=1 on the WebSocket object

© 2015 Farata Systems

Web Browser WebSocketClient
• Initiate the connection to the server's endpoint by creating an instance

of WebSocket object providing the URL of the server
• Write an onOpen() callback function

• Write an onMessage() callback

• Write an onClose() callback

• Write an onError() callback

© 2015 Farata Systems

The JavaScript Client
if (window.WebSocket) {
 ws = new WebSocket("ws://www.websocket.org/echo");

 ws.onopen = function() {
 console.log("onopen");
 };

 ws.onmessage = function(e) {
 console.log("echo from server : " + e.data);
 };

 ws.onclose = function() {
 console.log("onclose");
 };
 ws.onerror = function() {
 console.log("onerror");
 };

} else {
 console.log("WebSocket object is not supported");
}

ws.send(“Hello Server”);Sending request to server:

© 2015 Farata Systems

Java EE WebSocket Server’s APIs
 1. Annotated WebSocket endpoint

Annotate a POJO with @ServerEndpoint, and its methods with
@OnOpen,@OnMessage, @OnError,and @OnClose

2. Programmatic endpoint

Extend your class from javax.websocket.Endpoint and override
onOpen(), onMessage(), onError(), and onClose().

© 2015 Farata Systems

HelloWebSocket Server

@ServerEndpoint("/hello")
public class HelloWebSocket {

 @OnOpen
 public void greetTheClient(Session session){
 try {
 session.getBasicRemote().sendText("Hello stranger");

 } catch (IOException ioe) {
 System.out.println(ioe.getMessage());
 }
 }
}

The server-side push without client’s requests

© 2015 Farata Systems

Code Fragment with Websockets in Spring
public class WebSocketEndPoint extends TextWebSocketHandler { 
 private final static Logger LOG = LoggerFactory.getLogger(WebSocketEndPoint.class); 
 
 private Gson gson;  
 private WebSocketSession currentSession;  
 
 @Override 
 public void afterConnectionEstablished(WebSocketSession session) throws Exception { 
 super.afterConnectionEstablished(session); 
 
 setCurrentSession(session); 
 } 
 
 public boolean sendMeasurement(Measurement m) { 
 if (getCurrentSession() != null) { 
 TextMessage message = new TextMessage(getGson().toJson(m)); 
 
 try {  
 getCurrentSession().sendMessage(message); 
 } catch (IOException e) { 
 e.printStackTrace(); 
 return false;  
 } 
 
 return true;  
 } else {  
 LOG.info("Can not send message, session is not established."); 
 return false;  
 } 
 } 

Deploying with Spring Boot
• Java EE REST services are deployed in a WAR under the external Java Server.

• Spring Boot allows creating a standalone app (a JAR) with an embedded servlet container.

• Starting our RESTful server: java -jar MyJar.

• We used Tomcat. To use another server, exclude Tomcat in build configuration and specify
another dependency. Here’s a sample section from Gradle build:

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web") {
 exclude module: "spring-boot-starter-tomcat"
 }
 compile("org.springframework.boot:spring-boot-starter-jetty")
}

What about security?
• Device vendors should take security very seriously.

• We don’t deal with security between the thing and its vendor.

• We just use OAauth state attribute, and the OAuth provider must check that
the received redirect_uri is the same as provided during the app registration.

• IoT integration apps are as as secure as any other Web app (see owasp.org).

http://owasp.org

Contact Info
• Farata Systems: faratasystems.com

• email: yfain@faratasystems.com

• Twitter: @yfain

• My blog: yakovfain.com

• My podcast: americhka.us 
 
 

http://faratasystems.com
mailto:yfain@faratasystems.com
http://yakovfain.com
http://americhka.us

