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« Java agent monitoring your application
* In case of problem reports you exact details

* Memory leak, class loader leaks, GC related problems,
contented locks
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Agenda

Quick overview of Java Memory Management
A word on Garbage Collector

Reachability and memory leaks

Memory usage monitoring

Heap dump

Eclipse Memory Analyser Tool
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JVM and memory

When JVM runs, it uses different regions of memory
Native

Heap (Young generation and Old generation)
Permanent Generation
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Default sizes

Default sizes of these regions depends on computer

Jjava —-XX:+UnlockDiagnosticVMOptions
-XX:+PrintFlagsFinal -version

MaxHeapSize
MaxPermSize

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html
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How to change them

* You almost always want to go with non-default sizes
e —XmxX2g
e —XX:MaxPermSize=128m
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Java memory management

* JVM has automatic memory management
* Developers don’t think about it
* They just new and go on

Plumbr



Garbage Collector

Subsystem of JVM for reclaiming “unused” memory
Memory occupied by unused objects

Not JVM specific, many runtimes have it

Different algorithms
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GC “wizardry”

* GC is not mind reading magician
* It always works by very specific and strict algorithm
* “No references, thus garbage”
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* Special objects, always considered to be alive
» Often heap objects referenced from outside the heap
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System Classes

JNI references

Running Threads

Local variables or parameters
Native stack

Used monitors

Other )

Plumbr



References

* From an object to the value of one of its instance fields
* From an array to one of its elements

* From an object to its class

* From a class to its class loader

* From a class to the value of one of its static fields

* From a class to its superclass
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Reachability

Mark all GC roots as “reachable”

Mark all objects referenced from “reachable” objects as
“reachable” too

Repeat until all reachable objects found
Everything else is garbage and can be thrown away
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Memory leak

* Reachable object(s), that will never be used by application
* Repetitive creation of such objects
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Examples

Caches without look-ups and eviction
String.substring

Immortal threads

Unclosed 10 streams

Storages with longer lifespan than stored values
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Symptoms

* OutOfMemoryError: XXX
 Application is very slow due to excessive GC
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Not a memory leak

Too high allocation rate

Cache with wrong size

Trying to load too much data at once
Fat data structures
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Memory monitoring

* VisualVM/Java Mission Control
* |stat
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GC logs

—-XX:+PrintGCDhetails
—XX:+PrintGCTimeStamps
-Xloggc:file.log
—-XX:+UseGCLogFileRotation
—XX :NumberOfGClogFiles=N
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GC logs analyzers

 http://www.faster|.com/tools/gcloganalysers.shtml
* https://github.com/chewiebug/GCViewer
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Problem confirmed

* Reduce memory usage
* Tune GC
* Increase Xmx/PermGen
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Memory dump

* One of the best ways to find out what consumes memory
* Binary representation of objects graph written to a file
 NOT an accurate representation
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How to get memory dump

e Jmap -dump:format=b,file=heap.hprof
e —XX:+HeapDumpOnOutOfMemoryError
¢« —-XX:HeapDumpPath=./java pid<pid>.hprof
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When to get memory dump

* As late as possible!
* You want to let that needle grow and fill the whole hey sack
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What to do with it

* Get it to a computer with lot of memory.
* Add memory to that computer
- MAT
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https://www.eclipse.org/mat/

Shallow vs Deep

* You can measure shallow size of the object
* Or deep size of the subgraph starting with the object
* Or retained size of the subgraph dominated by the object
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Shallow object size

 Size of the object itself
*  With object header and all fields
* But without fields’ values
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Retained size

+(02)
O
* r(01)=01+02+03+04 * d(01)=01+02+03+04
* r(02)=02 * d(02)=02+03+04
r(0O3)=03+04 * d(03)=03+04
r(04)=04 * d(04)=04
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Classloader leak

[ Object J—"i"—m"—'“—{ Class feren ClassLoader }
Class references all classes
loaded by it
&
\

* https://plumbr.eu/blog/what-is-a-permgen-leak
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Other tools

* Do NOT use profilers
* https://plumbr.eu/blog/solving-outofmemoryerror-memaory-
profilers
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Solving performance problems is hard.
We don’t think it needs to be.
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