
Where Is My Memory?

Who am I

• Nikita Salnikov-Tarnovski
• Founder and Master Developer from
• @iNikem / @JavaPlumbr

Plumbr

• Java agent monitoring your application
• In case of problem reports you exact details
• Memory leak, class loader leaks, GC related problems,

contented locks

Agenda

• Quick overview of Java Memory Management
• A word on Garbage Collector
• Reachability and memory leaks
• Memory usage monitoring
• Heap dump
• Eclipse Memory Analyser Tool

JVM and memory

• When JVM runs, it uses different regions of memory
• Native
• Heap (Young generation and Old generation)
• Permanent Generation

Default sizes

• Default sizes of these regions depends on computer
• java -XX:+UnlockDiagnosticVMOptions
-XX:+PrintFlagsFinal -version

• MaxHeapSize

• MaxPermSize
• http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html

How to change them

• You almost always want to go with non-default sizes
• -Xmx2g

• -XX:MaxPermSize=128m

Java memory management

• JVM has automatic memory management
• Developers don’t think about it
• They just new and go on

Garbage Collector

• Subsystem of JVM for reclaiming “unused” memory
• Memory occupied by unused objects
• Not JVM specific, many runtimes have it
• Different algorithms

GC “wizardry”

• GC is not mind reading magician
• It always works by very specific and strict algorithm
• “No references, thus garbage”

GC roots

• Special objects, always considered to be alive
• Often heap objects referenced from outside the heap

GC roots

• System Classes
• JNI references
• Running Threads
• Local variables or parameters
• Native stack
• Used monitors
• Other :)

References

• From an object to the value of one of its instance fields
• From an array to one of its elements
• From an object to its class
• From a class to its class loader
• From a class to the value of one of its static fields
• From a class to its superclass

Reachability

• Mark all GC roots as “reachable”
• Mark all objects referenced from “reachable” objects as

“reachable” too
• Repeat until all reachable objects found
• Everything else is garbage and can be thrown away

Memory leak

• Reachable object(s), that will never be used by application
• Repetitive creation of such objects

Examples

• Caches without look-ups and eviction
• String.substring
• Immortal threads
• Unclosed IO streams
• Storages with longer lifespan than stored values

Symptoms

• OutOfMemoryError: XXX
• Application is very slow due to excessive GC

Not a memory leak

• Too high allocation rate
• Cache with wrong size
• Trying to load too much data at once
• Fat data structures

Memory monitoring

• VisualVM/Java Mission Control
• jstat

GC logs

• -XX:+PrintGCDetails

• -XX:+PrintGCTimeStamps

• -Xloggc:file.log

• -XX:+UseGCLogFileRotation

• -XX:NumberOfGClogFiles=N

GC logs analyzers

• http://www.fasterj.com/tools/gcloganalysers.shtml
• https://github.com/chewiebug/GCViewer

http://www.fasterj.com/tools/gcloganalysers.shtml
https://github.com/chewiebug/GCViewer

Problem confirmed

• Reduce memory usage
• Tune GC
• Increase Xmx/PermGen

Memory dump

• One of the best ways to find out what consumes memory
• Binary representation of objects graph written to a file
• NOT an accurate representation

How to get memory dump

• jmap -dump:format=b,file=heap.hprof

• -XX:+HeapDumpOnOutOfMemoryError

• -XX:HeapDumpPath=./java_pid<pid>.hprof

When to get memory dump

• As late as possible!
• You want to let that needle grow and fill the whole hey sack

What to do with it

• Get it to a computer with lot of memory.
• Add memory to that computer
• MAT

https://www.eclipse.org/mat/

Shallow vs Deep

• You can measure shallow size of the object
• Or deep size of the subgraph starting with the object
• Or retained size of the subgraph dominated by the object

Shallow object size

• Size of the object itself
• With object header and all fields
• But without fields’ values

Retained size

• r(O1)=O1+O2+O3+O4
• r(O2)=O2
• r(O3)=O3+O4
• r(O4)=O4

• d(O1)=O1+O2+O3+O4
• d(O2)=O2+O3+O4
• d(O3)=O3+O4
• d(O4)=O4

Classloader leak

• https://plumbr.eu/blog/what-is-a-permgen-leak

https://plumbr.eu/blog/what-is-a-permgen-leak

Other tools

• Do NOT use profilers
• https://plumbr.eu/blog/solving-outofmemoryerror-memory-

profilers

https://plumbr.eu/blog/solving-outofmemoryerror-memory-profilers

Solving performance problems is hard.
We don’t think it needs to be.

