Where Is My Memory?

Plumbr



* Nikita Salnikov-Tarnovski
- Founder and Master Developer from Plumbr
 @iNikem / @JavaPlumbr

Plumbr



« Java agent monitoring your application
* In case of problem reports you exact details

* Memory leak, class loader leaks, GC related problems,
contented locks

Plumbr



Agenda

Quick overview of Java Memory Management
A word on Garbage Collector

Reachability and memory leaks

Memory usage monitoring

Heap dump

Eclipse Memory Analyser Tool

Plumbr



JVM and memory

When JVM runs, it uses different regions of memory
Native

Heap (Young generation and Old generation)
Permanent Generation

Plumbr



Default sizes

Default sizes of these regions depends on computer

Jjava —-XX:+UnlockDiagnosticVMOptions
-XX:+PrintFlagsFinal -version

MaxHeapSize
MaxPermSize

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html

Plumbr


http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/toc.html

How to change them

* You almost always want to go with non-default sizes
e —XmxX2g
e —XX:MaxPermSize=128m

Plumbr



Java memory management

* JVM has automatic memory management
* Developers don’t think about it
* They just new and go on

Plumbr



Garbage Collector

Subsystem of JVM for reclaiming “unused” memory
Memory occupied by unused objects

Not JVM specific, many runtimes have it

Different algorithms

Plumbr



GC “wizardry”

* GC is not mind reading magician
* It always works by very specific and strict algorithm
* “No references, thus garbage”

Plumbr



* Special objects, always considered to be alive
» Often heap objects referenced from outside the heap

Plumbr



System Classes

JNI references

Running Threads

Local variables or parameters
Native stack

Used monitors

Other )

Plumbr



References

* From an object to the value of one of its instance fields
* From an array to one of its elements

* From an object to its class

* From a class to its class loader

* From a class to the value of one of its static fields

* From a class to its superclass

Plumbr



Reachability

Mark all GC roots as “reachable”

Mark all objects referenced from “reachable” objects as
“reachable” too

Repeat until all reachable objects found
Everything else is garbage and can be thrown away

Plumbr



Memory leak

* Reachable object(s), that will never be used by application
* Repetitive creation of such objects

Plumbr



Examples

Caches without look-ups and eviction
String.substring

Immortal threads

Unclosed 10 streams

Storages with longer lifespan than stored values

Plumbr



Symptoms

* OutOfMemoryError: XXX
 Application is very slow due to excessive GC

Plumbr



Not a memory leak

Too high allocation rate

Cache with wrong size

Trying to load too much data at once
Fat data structures

Plumbr



Memory monitoring

* VisualVM/Java Mission Control
* |stat

Plumbr



GC logs

—-XX:+PrintGCDhetails
—XX:+PrintGCTimeStamps
-Xloggc:file.log
—-XX:+UseGCLogFileRotation
—XX :NumberOfGClogFiles=N

Plumbr



GC logs analyzers

 http://www.faster|.com/tools/gcloganalysers.shtml
* https://github.com/chewiebug/GCViewer

Plumbr


http://www.fasterj.com/tools/gcloganalysers.shtml
https://github.com/chewiebug/GCViewer

Problem confirmed

* Reduce memory usage
* Tune GC
* Increase Xmx/PermGen

Plumbr



Memory dump

* One of the best ways to find out what consumes memory
* Binary representation of objects graph written to a file
 NOT an accurate representation

Plumbr



How to get memory dump

e Jmap -dump:format=b,file=heap.hprof
e —XX:+HeapDumpOnOutOfMemoryError
¢« —-XX:HeapDumpPath=./java pid<pid>.hprof

Plumbr



When to get memory dump

* As late as possible!
* You want to let that needle grow and fill the whole hey sack

Plumbr



What to do with it

* Get it to a computer with lot of memory.
* Add memory to that computer
- MAT

Plumbr


https://www.eclipse.org/mat/

Shallow vs Deep

* You can measure shallow size of the object
* Or deep size of the subgraph starting with the object
* Or retained size of the subgraph dominated by the object

Plumbr



Shallow object size

 Size of the object itself
*  With object header and all fields
* But without fields’ values

Plumbr



Retained size

+(02)
O
* r(01)=01+02+03+04 * d(01)=01+02+03+04
* r(02)=02 * d(02)=02+03+04
r(0O3)=03+04 * d(03)=03+04
r(04)=04 * d(04)=04

Plumbr



Classloader leak

[ Object J—"i"—m"—'“—{ Class feren ClassLoader }
Class references all classes
loaded by it
&
\

* https://plumbr.eu/blog/what-is-a-permgen-leak

Plumbr


https://plumbr.eu/blog/what-is-a-permgen-leak

Other tools

* Do NOT use profilers
* https://plumbr.eu/blog/solving-outofmemoryerror-memaory-
profilers

Plumbr


https://plumbr.eu/blog/solving-outofmemoryerror-memory-profilers

Solving performance problems is hard.
We don’t think it needs to be.

Plumbr



