
Speaker : Alexey Zinoviev

Mom, I so wish Hibernate for my NoSQL
database...

About

● I am a scientist. The area of my interests includes machine

learning, traffic jams prediction, BigData algorythms.

● But I'm a programmer, so I'm interested in NoSQL databases,

Java, Android, Hadoop, Spark.

Introduction

The Good Old Days

One of these fine days...

We have a NoSQL job for you, son!

You like SQL and HATE nontraditional data

Let’s talk about it, Java-boy...

NoSQL

NoSQL

SQL

The Database Market

Have your ever heard about...

CAP -
theorem?

Flower varieties I
Data
Model

Performance Scalability Flexibility Complexity Functionality

Key–
value
Stores

high high high none variable (none)

Column
Store

high high moderate low minimal

Document
Store

high variable
(high)

high low variable (low)

Graph
Database

variable variable high high graph theory

Relational
Database

variable variable low moderate relational algebra

Flower varieties II

Database Data model Query API Data storage system

Cassandra Column Family Thrift Memtable/SSTable

CouchDB Documents Map/Reduce Append-only-B-tree

Hbase Column Family Thrift, REST Memtable/SSTable on HDFS

MongoDB Documents Cursor B-tree

Neo4j Edges/Verticies Graph On-disk linked lists

Riak Key/Value Nested hashes,
REST

Hash

Flower varieties III

Database Secondary
indexes

MapReduce Free form queries

Cassandra yes no CQL (no joins)

CouchDB yes JavaScript Views

Hbase no Hadoop weak support

MongoDB yes JavaScript Full stack without joins

Neo4j yes (with Lucene) no Search, graph operations

Riak yes JavaScript, Erlang weak support, Lucene

But.. how about @ and JPA and ..

Cassandra World

● CRUD + column iteration, Partial support of JPA standart

● Consistency Level can be set per Column Family and per

operation type (Read, Write)

● Based on Thrift RPC protocol (1 response per 1 request)

● Mapping a Collection (POJO property) to columns

● Inheritance through ‘single table’

● Custom converters to/from byte[]

 Hector

http://hector-client.github.io/hector/build/html/content/getting_started.html#column-iteration
http://hector-client.github.io/hector/build/html/content/HOM/hector-object-mapper.html
http://hector-client.github.io/hector/build/html/content/getting_started.html#column-iteration
https://github.com/hector-client/hector

● DataStax developed a new protocol that doesn't have RPC

limitations (Asynchronous I/O)

● Low-level API with simple mapping

● Works with CQL3

● QueryBuilder reminds CriteriaAPI

● Accessor-annotated interfaces

 DataStax Java Driver

https://github.com/datastax/java-driver

Do you want more adventures?

● Achilles : well documented and provides transactions

● Astyanax : connection pool, thread safety and pagination

● Pelops : old project, good bycicle

● PlayORM : strange but powerful thing

● Easy-Cassandra : simple annotations + CRUD

● Thrift as low level API

 Other Cassandra’s OM

https://github.com/doanduyhai/Achilles
https://github.com/doanduyhai/Achilles
https://github.com/Netflix/astyanax
http://techblog.netflix.com/2012/01/announcing-astyanax.html
https://github.com/Netflix/astyanax
https://github.com/s7/scale7-pelops
https://github.com/s7/scale7-pelops
http://buffalosw.com/products/playorm/
http://buffalosw.com/products/playorm/
https://github.com/otaviojava/Easy-Cassandra
https://github.com/otaviojava/Easy-Cassandra

Mongo World

● Integrated with Spring, Guice and other DI frameworks

● Lifecycle Method Annotations (@PrePersist, @PostLoad)

● Built on top of Mongo Java Driver

● More better than old-style BSON-object quering

● Fluent Query API :
ds.createQuery(MyEntity.class).filter("foo >",12).order("date, -

foo");

 Morphia

https://github.com/mongodb/morphia

● Templating : connection configs, collection lifecycle (create,

drop), Map/Reduce + Aggregation

● Mapping: @Document, @Index, @Field

● Repository support: geospatial queries, queries derived

from method signatures (at runtime)

● Paging, sorting, CRUD operations

 Spring Data MongoDB

● Jongo : mongo - shell queries in Java-code

● EclipseLink : different support of different NoSQL

databases

● MJORM : Google Code, XML mapping + MQL (SQL syntax

for Mongo data extracting)

● DataNucleus : support many Js as JDO, JPA

 Mongo - mongo

http://jongo.org/
http://jongo.org/
http://wiki.eclipse.org/EclipseLink/Examples/JPA/NoSQL
https://code.google.com/p/mongo-java-orm/
http://www.datanucleus.org/products/accessplatform_3_1/
http://www.datanucleus.org/products/accessplatform_3_1/

Hibernate in NoSQL world

● Java Persistence (JPA) support for NoSQL solutions

● JP-QL queries are converted in native backend queries

● Hibernate Search as indexing engine and use full-text

queries

● You can call flush(), commit() and demarcate transactions

● It supports only MongoDB, Neo4j, Infinispan, Ehcache

 Hibernate OGM

Polyglot Persistance

Polyglot Persistance

● Redis: Rapid access for reads and writes. No need to be durable

● RBDMS: Needs transactional updates and has tabular structure.

● Riak: Needs high availability across multiple locations. Can merge

inconsistent writes

● Neo4j: Rapidly traverse links between friends and ratings.

● MongoDB: Lots of reads, infrequent writes. Powerful aggregation

mechanism.

● Cassandra: Large-scale analytics on large cluster. High volume of writes

on multiple nodes

 Polyglot Persistance

Kundera : Polyglot approach

● Atomicity guarantee and Transaction management

● Strictly JPA 2.1 compatible

● It supports Cassandra, Mongo, Hbase, Redis, Neo4j and etc

● @Embedded and @ElementCollection for ColumnFamily

and nested documents

● OneToMany, OneToOne, ManyToMany relationships

● Not full JPQL support for different database

https://github.com/impetus-opensource/Kundera/wiki/Transaction-Management
https://github.com/impetus-opensource/Kundera/wiki/Datastores-Supported
https://github.com/impetus-opensource/Kundera/wiki/JPQL
https://github.com/impetus-opensource/Kundera/wiki/JPQL

Kundera’s holes

If you developing a project for...

● a U.S. company - Morphia or Hector

● a transnational company with history of merging - Kundera

● a Deutsche Bank - Hibernate OGM or SpringData

● a Russian company, or one in in the former U.S.S.R. - native

drivers is the best approach (you will spend so many time)

● … just to play - Jongo, Easy - Cassandra and EclipseLink

Your Country Needs You!

● Know your cases and data!

● Choose right database!

● Choose right framework!

● In Soviet Russia backends

are waiting you!

Your questions?

